An automatic microcalcification detection system based on a hybrid neural network classifier

dc.contributor.authorPapadopoulos, A.en
dc.contributor.authorFotiadis, D. I.en
dc.contributor.authorLikas, A.en
dc.date.accessioned2015-11-24T17:31:37Z
dc.date.available2015-11-24T17:31:37Z
dc.identifier.issn0933-3657-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/13606
dc.rightsDefault Licence-
dc.subjectmicrocalcification detectionen
dc.subjecthybrid neural networken
dc.subjectcomputer-aided detection (cad)en
dc.subjectmammographyen
dc.subjectbreast-cancer detectionen
dc.subjectdigital mammogramsen
dc.subjectclustered microcalcificationsen
dc.subjectpattern-recognitionen
dc.subjectwavelet transformen
dc.subjectdeath ratesen
dc.subjectsegmentationen
dc.subjectdiagnosisen
dc.subjectcalcificationsen
dc.subjectenhancementen
dc.titleAn automatic microcalcification detection system based on a hybrid neural network classifieren
heal.abstractA hybrid intelligent system is presented for the identification of microcalcification clusters in digital mammograms. The proposed method is based on a three-step procedure: (a) preprocessing and segmentation, (b) regions of interest (ROI) specification, and (c) feature extraction and classification. The reduction of false positive cases is performed using an intelligent system containing two subsystems: a rule-based and a neural network sub-system. In the first step of the classification schema 22 features are automatically computed which refer either to individual microcalcifications or to groups of them. Further reduction in the number of features is achieved through principal component analysis (PCA). The proposed methodology is tested using the Nijmegen and the Mammographic Image Analysis Society (MIAS) mammographic databases. Results are presented as the receiver operating characteristic (ROC) performance and are quantified by the area under the ROC curve (A(z)). In particular, the A(z) value for the Nijmegen dataset is 0.91 and for the MIAS is 0.92. The detection specificity of the two sets is 1.80 and 1.15 false positive clusters per image, at the sensitivity level higher than 0.90, respectively. (C) 2002 Elsevier Science B.V. All rights reserved.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.secondary<Go to ISI>://000176197900003-
heal.identifier.secondaryhttp://ac.els-cdn.com/S0933365702000131/1-s2.0-S0933365702000131-main.pdf?_tid=081534f444f65602384a4cb65461fc9d&acdnat=1339758333_8c32202767a26e0488bcc67032178c7c-
heal.journalNameArtif Intell Meden
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2002-
heal.publisherElsevieren
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Επιστήμης Υλικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: