Exact SOR convergence regions for a general class of P-cyclic matrices
dc.contributor.author | Hadjidimos, A. | en |
dc.contributor.author | Noutsos, D. | en |
dc.contributor.author | Tzoumas, M. | en |
dc.date.accessioned | 2015-11-24T17:23:20Z | |
dc.date.available | 2015-11-24T17:23:20Z | |
dc.identifier.issn | 0006-3835 | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/12736 | |
dc.rights | Default Licence | - |
dc.subject | p-cyclic matrices | en |
dc.subject | sor method | en |
dc.subject | hypocycloids | en |
dc.subject | iterative euler methods | en |
dc.subject | least-squares problems | en |
dc.subject | linear-systems | en |
dc.subject | overrelaxation | en |
dc.title | Exact SOR convergence regions for a general class of P-cyclic matrices | en |
heal.abstract | Linear systems whose associated block Jacobi iteration matrix B is weakly cyclic generated by the cyclic permutation sigma = (sigma(1), sigma(2),...,sigma(p)) in the spirit of Li and Varga are considered. Regions of convergence for the corresponding block p-cyclic SOR method are derived and the exact convergence domains for real spectra, sigma(B-p), Of the same sign are obtained. Moreover, analytical expressions for two special cases for p = 5 are given and numerical results are presented confirming the theory developed. The tools used for this work are mainly from complex analysis and extensive use of (asteroidal) hypocycloids in the complex plane is made to produce our results. | en |
heal.access | campus | - |
heal.fullTextAvailability | TRUE | - |
heal.identifier.secondary | <Go to ISI>://A1995TL73600002 | - |
heal.journalName | Bit Numerical Mathematics | en |
heal.journalType | peer reviewed | - |
heal.language | en | - |
heal.publicationDate | 1995 | - |
heal.publisher | Springer Verlag (Germany) | en |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών | el |
heal.type | journalArticle | - |
heal.type.el | Άρθρο Περιοδικού | el |
heal.type.en | Journal article | en |
Αρχεία
Φάκελος/Πακέτο αδειών
1 - 1 of 1
Φόρτωση...
- Ονομα:
- license.txt
- Μέγεθος:
- 1.74 KB
- Μορφότυπο:
- Item-specific license agreed upon to submission
- Περιγραφή: