MR brain tissue classification using an edge-preserving spatially variant Bayesian mixture model

dc.contributor.authorSfikas, G.en
dc.contributor.authorNikou, C.en
dc.contributor.authorGalatsanos, N.en
dc.contributor.authorHeinrich, C.en
dc.date.accessioned2015-11-24T17:01:52Z
dc.date.available2015-11-24T17:01:52Z
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/10991
dc.rightsDefault Licence-
dc.subject*Algorithmsen
dc.subject*Artificial Intelligenceen
dc.subjectBayes Theoremen
dc.subjectBrain/*anatomy & histologyen
dc.subjectComputer Simulationen
dc.subjectHumansen
dc.subjectImage Enhancement/methodsen
dc.subjectImage Interpretation, Computer-Assisted/*methodsen
dc.subjectImaging, Three-Dimensional/*methodsen
dc.subjectMagnetic Resonance Imaging/*methodsen
dc.subjectModels, Anatomicen
dc.subjectModels, Neurologicalen
dc.subjectModels, Statisticalen
dc.subjectPattern Recognition, Automated/*methodsen
dc.subjectReproducibility of Resultsen
dc.subjectSensitivity and Specificityen
dc.titleMR brain tissue classification using an edge-preserving spatially variant Bayesian mixture modelen
heal.abstractIn this paper, a spatially constrained mixture model for the segmentation of MR brain images is presented. The novelty of this work is an edge-preserving smoothness prior which is imposed on the probabilities of the voxel labels. This prior incorporates a line process, which is modeled as a Bernoulli random variable, in order to preserve edges between tissues. The main difference with other, state of the art methods imposing priors, is that the constraint is imposed on the probabilities of the voxel labels and not onto the labels themselves. Inference of the proposed Bayesian model is obtained using variational methodology and the model parameters are computed in closed form. Numerical experiments are presented where the proposed model is favorably compared to state of the art brain segmentation methods as well as to a spatially varying Gaussian mixture model.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.journalNameMed Image Comput Comput Assist Interven
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2008-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: