Fuzzy cognitive maps learning using particle swarm optimization
Φόρτωση...
Ημερομηνία
Συγγραφείς
Papageorgiou, E. I.
Parsopoulos, K. E.
Stylios, C.
Groumpos, P. P.
Vrahatis, M. N.
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
Journal of Intelligent Information Systems
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
This paper introduces a new learning algorithm for Fuzzy Cognitive Maps, which is based on the application of a swarm intelligence algorithm, namely Particle Swarm Optimization. The proposed approach is applied to detect weight matrices that lead the Fuzzy Cognitive Map to desired steady states, thereby refining the initial weight approximation provided by the experts. This is performed through the minimization of a properly defined objective function. This novel method overcomes some deficiencies of other learning algorithms and, thus, improves the efficiency and robustness of Fuzzy Cognitive Maps. The operation of the new method is illustrated on an industrial process control problem, and the obtained simulation results support the claim that it is robust and efficient.
Περιγραφή
Λέξεις-κλειδιά
fuzzy cognitive maps, particle swarm optimization, swarm intelligence, soft computing, supervisory control-systems, evolutionary computation, convergence, algorithm, challenge, selection, design
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής