A Posteriori Error Estimates for the Two-Step Backward Differentiation Formula Method for Parabolic Equations
Φόρτωση...
Ημερομηνία
Συγγραφείς
Akrivis, G.
Chatzipantelidis, P.
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
Siam Journal on Numerical Analysis
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
We derive optimal order residual-based a posteriori error estimates for time discretizations by the two-step backward differentiation formula (BDF) method for linear parabolic equations. Appropriate reconstructions of the approximate solution play a key role in the analysis. To utilize the BDF method we employ one step by both the trapezoidal method or the backward Euler scheme. Our a posteriori error estimates are of optimal order for the former choice and suboptimal for the latter. Simple numerical experiments illustrate this behavior.
Περιγραφή
Λέξεις-κλειδιά
parabolic equations, two-step backward differentiation formula method, residual, two-step backward differentiation formula reconstruction, a posteriori error analysis, crank-nicolson method
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής