Sparse Bayesian Modeling With Adaptive Kernel Learning

dc.contributor.authorTzikas, D. G.en
dc.contributor.authorLikas, A. C.en
dc.contributor.authorGalatsanos, N. P.en
dc.date.accessioned2015-11-24T17:02:12Z
dc.date.available2015-11-24T17:02:12Z
dc.identifier.issn1045-9227-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/11024
dc.rightsDefault Licence-
dc.subjectclassificationen
dc.subjectkernel learningen
dc.subjectregressionen
dc.subjectrelevance vector machine (rvm)en
dc.subjectsparse bayesian learningen
dc.subjectrelevance vector machineen
dc.titleSparse Bayesian Modeling With Adaptive Kernel Learningen
heal.abstractSparse kernel methods are very efficient in solving regression and classification problems. The sparsity and performance of these methods depend on selecting an appropriate kernel function, which is typically achieved using a cross-validation procedure. In this paper, we propose an incremental method for supervised learning, which is similar to the relevance vector machine (RVM) but also learns the parameters of the kernels during model training. Specifically, we learn different parameter values for each kernel, resulting in a very flexible model. In order to avoid over-fitting, we use a sparsity enforcing prior that controls the effective number of parameters of the model. We present experimental results on artificial data to demonstrate the advantages of the proposed method and we provide a comparison with the typical RVM on several commonly used regression and classification data sets.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDoi 10.1109/Tnn.2009.2014060-
heal.journalNameIeee Transactions on Neural Networksen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2009-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: