Automated Detection of Cell Nuclei in Pap Smear Images Using Morphological Reconstruction and Clustering

dc.contributor.authorPlissiti, M. E.en
dc.contributor.authorNikou, C.en
dc.contributor.authorCharchanti, A.en
dc.date.accessioned2015-11-24T17:02:36Z
dc.date.available2015-11-24T17:02:36Z
dc.identifier.issn1089-7771-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/11074
dc.rightsDefault Licence-
dc.subjectcell nuclei detectionen
dc.subjectfuzzy c-means (fcm)en
dc.subjectmorphological reconstructionen
dc.subjectpap smear imagesen
dc.subjectsupport vector machines (svms)en
dc.subjectsegmentationen
dc.subjectcytoplasten
dc.titleAutomated Detection of Cell Nuclei in Pap Smear Images Using Morphological Reconstruction and Clusteringen
heal.abstractIn this paper, we present a fully automated method for cell nuclei detection in Pap smear images. The locations of the candidate nuclei centroids in the image are detected with morphological analysis and they are refined in a second step, which incorporates a priori knowledge about the circumference of each nucleus. The elimination of the undesirable artifacts is achieved in two steps: the application of a distance-dependent rule on the resulted centroids; and the application of classification algorithms. In our method, we have examined the performance of an unsupervised (fuzzy C-means) and a supervised (support vector machines) classification technique. In both classification techniques, the effect of the refinement step improves the performance of the clustering algorithm. The proposed method was evaluated using 38 cytological images of conventional Pap smears containing 5617 recognized squamous epithelial cells. The results are very promising, even in the case of images with high degree of cell overlapping.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDoi 10.1109/Titb.2010.2087030-
heal.journalNameIeee Transactions on Information Technology in Biomedicineen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2011-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: