An incremental training method for the probabilistic RBF network

dc.contributor.authorConstantinopoulos, C.en
dc.contributor.authorLikas, A.en
dc.date.accessioned2015-11-24T17:01:15Z
dc.date.available2015-11-24T17:01:15Z
dc.identifier.issn1045-9227-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/10895
dc.rightsDefault Licence-
dc.subjectclassificationen
dc.subjectdecision boundaryen
dc.subjectmixture modelsen
dc.subjectneural networksen
dc.subjectprobabilistic modelingen
dc.subjectradial basis function networksen
dc.subjectem algorithmen
dc.subjectneural networksen
dc.subjectmixtureen
dc.subjectclassificationen
dc.subjectlikelihooden
dc.subjectmodelsen
dc.titleAn incremental training method for the probabilistic RBF networken
heal.abstractThe probabilistic radial basis function (PRBF) network constitutes a probabilistic version of the RBF network for classification that extends the typical mixture model approach to classification by allowing the sharing of mixture components among all classes. The typical learning method of PRBF for a classification task employs the expectation-maximization (EM) algorithm and depends strongly on the initial parameter values. In this paper, we propose a technique for incremental training of the PRBF network for classification. The proposed algorithm starts with a single component and incrementally adds more components at appropriate positions in the data space. The addition of a new component is based on criteria for detecting a region in the data space that is crucial for the classification task. After the addition of all components, the algorithm splits every component of the network into subcomponents, each one corresponding to a different class. Experimental results using several well-known classification data sets indicate that the incremental method provides solutions of superior classification performance compared to the hierarchical PRBF training method. We also conducted comparative experiments with the support vector machines method and present the obtained results along with a qualitative comparison of the two approaches.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDoi 10.1109/Tnn.2006.875982-
heal.journalNameIeee Transactions on Neural Networksen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2006-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: