Probabilistic relevance feedback approach for content-based image retrieval based on gaussian mixture models

Loading...
Thumbnail Image

Date

Authors

Marakakis, A.
Galatsanos, N.
Likas, A.
Stafylopatis, A.

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Type of the conference item

Journal type

peer reviewed

Educational material type

Conference Name

Journal name

Iet Image Processing

Book name

Book series

Book edition

Alternative title / Subtitle

Description

A new relevance feedback (RF) approach for content-based image retrieval is presented. This approach uses Gaussian mixture (GM) models of the image features and a query that is updated in a probabilistic manner. This update reflects the preferences of the user and is based on the models of both the positive and negative feedback images. The retrieval is based on a recently proposed distance measure between probability density functions, which can be computed in closed form for GM models. The proposed approach takes advantage of the form of this distance measure and updates it very efficiently based on the models of the user specified relevant and irrelevant images. It is also shown that this RF framework is fairly general and can be applied in case other image models or distance measures are used instead of those proposed in this work. Finally, comparative numerical experiments are provided, which that demonstrate the merits of the proposed RF methodology and the use of the distance measure, and also the advantages of using GMs for image modelling.

Description

Keywords

bayesian framework, negative examples, segmentation, efficient, system

Subject classification

Citation

Link

Language

en

Publishing department/division

Advisor name

Examining committee

General Description / Additional Comments

Institution and School/Department of submitter

Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής

Table of contents

Sponsor

Bibliographic citation

Name(s) of contributor(s)

Number of Pages

Course details

Endorsement

Review

Supplemented By

Referenced By