Intestinal motility assessment with video capsule endoscopy: automatic annotation of phasic intestinal contractions

dc.contributor.authorVilarino, F.en
dc.contributor.authorSpyridonos, P.en
dc.contributor.authorDeiorio, F.en
dc.contributor.authorVitria, J.en
dc.contributor.authorAzpiroz, F.en
dc.contributor.authorRadeva, P.en
dc.date.accessioned2015-11-24T19:09:18Z
dc.date.available2015-11-24T19:09:18Z
dc.identifier.issn1558-0062-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/20686
dc.rightsDefault Licence-
dc.subjectAdulten
dc.subjectCapsule Endoscopy/*methodsen
dc.subjectGastrointestinal Motility/*physiologyen
dc.subjectHumansen
dc.subjectImage Processing, Computer-Assisted/*methodsen
dc.subjectROC Curveen
dc.subjectReproducibility of Resultsen
dc.titleIntestinal motility assessment with video capsule endoscopy: automatic annotation of phasic intestinal contractionsen
heal.abstractIntestinal motility assessment with video capsule endoscopy arises as a novel and challenging clinical fieldwork. This technique is based on the analysis of the patterns of intestinal contractions shown in a video provided by an ingestible capsule with a wireless micro-camera. The manual labeling of all the motility events requires large amount of time for offline screening in search of findings with low prevalence, which turns this procedure currently unpractical. In this paper, we propose a machine learning system to automatically detect the phasic intestinal contractions in video capsule endoscopy, driving a useful but not feasible clinical routine into a feasible clinical procedure. Our proposal is based on a sequential design which involves the analysis of textural, color, and blob features together with SVM classifiers. Our approach tackles the reduction of the imbalance rate of data and allows the inclusion of domain knowledge as new stages in the cascade. We present a detailed analysis, both in a quantitative and a qualitative way, by providing several measures of performance and the assessment study of interobserver variability. Our system performs at 70% of sensitivity for individual detection, whilst obtaining equivalent patterns to those of the experts for density of contractions.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primary10.1109/TMI.2009.2020753-
heal.identifier.secondaryhttp://www.ncbi.nlm.nih.gov/pubmed/19423434-
heal.journalNameIEEE Trans Med Imagingen
heal.journalTypepeer-reviewed-
heal.languageen-
heal.publicationDate2010-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών Υγείας. Τμήμα Ιατρικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: