Structural, Electronic, and Optical Properties of Representative Cu-Flavonoid Complexes

dc.contributor.authorLekka, C. E.en
dc.contributor.authorRen, J.en
dc.contributor.authorMeng, S.en
dc.contributor.authorKaxiras, E.en
dc.date.accessioned2015-11-24T17:38:42Z
dc.date.available2015-11-24T17:38:42Z
dc.identifier.issn1520-6106-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/14533
dc.rightsDefault Licence-
dc.subjectelectrospray mass-spectrometryen
dc.subjectantioxidant propertiesen
dc.subjectmolecular-structureen
dc.subjectmetal-ionsen
dc.subjectironen
dc.subjectquercetinen
dc.subjectsystemsen
dc.subjectpseudopotentialsen
dc.subjectmechanismsen
dc.subjectchelationen
dc.titleStructural, Electronic, and Optical Properties of Representative Cu-Flavonoid Complexesen
heal.abstractWe present density functional theory (DFT) results on the structural, electronic, and optical properties of Cu-flavonoid complexes for molar ratios 1:1, 1:2, and 1:3. We find that the preferred chelating site is close to the 4-oxo group and in particular the 3-4 site followed by the 3'-4' dihydroxy group in ring B. For the Cu-quercetin complexes, the large bathochromic shift of the first absorbance band upon complexation, which is in good agreement with experimental UV-vis spectra, results from the reduction of the electronic. energy gap. The HOMO states for these complexes are characterized by pi-bonding between the Cu d orbitals and the C, 0 p orbitals except for the case of 1:1. complex (spin minority), which corresponds to sigma-type bonds. The LUMO states are attributed to the contribution of Cu pz orbitals. Consequently, the main features of the first optical absorption maxima are essentially due to pi -> pi* transitions, while the 1:1 complex exhibits also sigma -> pi* transitions. Our optical absorption calculations based on time-dependent DFT demonstrate that the 1: 1 complex is responsible for the spectroscopic features at pH 5.5, whereas the 1:2 complex is mainly the one responsible for the characteristic spectra at pH 7.4. These theoretical predictions explain in detail the behavior of the optical absorption for the Cu-flavonoid complexes observed in experiments and are thus useful in elucidating the complexation mechanism and antioxidant activity of flavonoids.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDoi 10.1021/Jp807948z-
heal.identifier.secondary<Go to ISI>://000265687500036-
heal.journalNameJournal of Physical Chemistry Ben
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2009-
heal.publisherAmerican Chemical Societyen
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Επιστήμης Υλικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: