Bayesian Methods for fMRI Time-Series Analysis Using a Nonstationary Model for the Noise

dc.contributor.authorOikonomou, V. P.en
dc.contributor.authorTripoliti, E. E.en
dc.contributor.authorFotiadis, D. I.en
dc.date.accessioned2015-11-24T17:32:19Z
dc.date.available2015-11-24T17:32:19Z
dc.identifier.issn1089-7771-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/13709
dc.rightsDefault Licence-
dc.subjectdrift removalen
dc.subjectfunctional mri (fmri) time seriesen
dc.subjectgeneralized linear model (glm)en
dc.subjectnonstationary noise modelen
dc.subjectvariational bayesian (vb) methodologyen
dc.subjectgeneral linear-modelen
dc.subjectinferenceen
dc.titleBayesian Methods for fMRI Time-Series Analysis Using a Nonstationary Model for the Noiseen
heal.abstractIn this paper, the Bayesian framework is used for the analysis of functional MRI (fMRI) data. Two algorithms are proposed to deal with the nonstationarity of the noise. The first algorithm is based on the temporal analysis of the data, while the second algorithm is based on the spatiotemporal analysis. Both algorithms estimate the variance of the noise across the images and the voxels. The first algorithm is based on the generalized linear model (GLM), while the second algorithm is based on a spatiotemporal version of it. In the GLM, an extended design matrix is used to deal with the presence of the drift in the fMRI time series. To estimate the regression parameters of the GLM as well as the variance components of the noise, the variational Bayesian (VB) methodology is employed. The use of the VB methodology results in an iterative algorithm, where the estimation of the regression coefficients and the estimation of variance components of the noise, across images and voxels, are interchanged in an elegant and fully automated way. The performance of the proposed algorithms (under the assumption of different noise models) is compared with the weighted least-squares (WLSs) method. Results using simulated and real data indicate the superiority of the proposed approach compared to the WLS method, thus taking into account the complex noise structure of the fMRI time series.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDoi 10.1109/Titb.2009.2039712-
heal.identifier.secondary<Go to ISI>://000278538300015-
heal.journalNameIeee Transactions on Information Technology in Biomedicineen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2010-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Επιστήμης Υλικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: