A method for classification of transient events in EEG recordings: Application to epilepsy diagnosis

dc.contributor.authorTzallas, A. T.en
dc.contributor.authorKarvelis, P. S.en
dc.contributor.authorKatsis, C. D.en
dc.contributor.authorFotiadis, D. I.en
dc.contributor.authorGiannopoulos, S.en
dc.contributor.authorKonitsiotis, S.en
dc.date.accessioned2015-11-24T17:33:14Z
dc.date.available2015-11-24T17:33:14Z
dc.identifier.issn0026-1270-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/13836
dc.rightsDefault Licence-
dc.subjecteegen
dc.subjectautomated epilepsy diagnosisen
dc.subjectclusteringen
dc.subjectartificial neural networksen
dc.subjectspike detectionen
dc.subjectknowledge-based systemen
dc.subjectartificial neural-networken
dc.subjectautomatic spike detectionen
dc.subjectepileptiform dischargesen
dc.subjectraw eegen
dc.subjectrecognitionen
dc.subjectsystemen
dc.subjectquantificationen
dc.subjectalgorithmsen
dc.subjectseizuresen
dc.titleA method for classification of transient events in EEG recordings: Application to epilepsy diagnosisen
heal.abstractObjectives: The aim of the paper is to analyze transient events in inter-ictal EEG recordings, and classify epileptic activity into focal or focal or generalized epilepsy using an automated method. Methods: A two-stage approach is proposed. In the first stage the observed transient events of a single channel are classified into four categories. epileptic spike (ES), muscle activity (EMG), eye blinking activity (EOG), and sharp alpha activity (SAA). The process is based on an artificial neural network. Different artificial neural network architectures have been tried and the network having the lowest error has been selected using the hold out approach. In the second stage a knowledge-based system is used to produce diagnosis for focal or generalized epileptic activity. Results: The classification of transient events reported high overall accuracy (84.48%), while the knowledge-based system for epilepsy diagnosis correctly classified nine out of ten cases. Conclusions: The proposed method is adventageous since it effectively detects and classifies the undesirable activity into appropriate categories and produces a final outcome related to the existence of epilepsy.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.secondary<Go to ISI>://000242859600005-
heal.journalNameMethods Inf Meden
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2006-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Επιστήμης Υλικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: