On the binomial arithmetical rank
dc.contributor.author | Thoma, A. | en |
dc.date.accessioned | 2015-11-24T17:26:31Z | |
dc.date.available | 2015-11-24T17:26:31Z | |
dc.identifier.issn | 0003-889X | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/13218 | |
dc.rights | Default Licence | - |
dc.subject | theoretic complete-intersections | en |
dc.title | On the binomial arithmetical rank | en |
heal.abstract | The binomial arithmetical rank of a binomial ideal I is the smallest integer s for which there exist binomials f(l)....,f(s), in I such that rad (I) = rad (f(l),...,f(s)). We completely determine the binomial arithmetical rank for the ideals of monomial curves in P-K(n). In particular we prove that. if the characteristic of the field K is zero, then bar (I(C)) = n - 1 if C is complete intersection, otherwise bar (I(C)) = n. While it is known that if the characteristic or the field K is positive, then bar (I(C)) = n - 1 always. | en |
heal.access | campus | - |
heal.fullTextAvailability | TRUE | - |
heal.identifier.secondary | <Go to ISI>://000085111400004 | - |
heal.identifier.secondary | http://www.springerlink.com/content/4vuwxx4xa6bx6mxc/fulltext.pdf | - |
heal.journalName | Archiv Der Mathematik | en |
heal.journalType | peer reviewed | - |
heal.language | en | - |
heal.publicationDate | 2000 | - |
heal.publisher | Springer Verlag (Germany) | en |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών | el |
heal.type | journalArticle | - |
heal.type.el | Άρθρο Περιοδικού | el |
heal.type.en | Journal article | en |
Αρχεία
Φάκελος/Πακέτο αδειών
1 - 1 of 1
Φόρτωση...
- Ονομα:
- license.txt
- Μέγεθος:
- 1.74 KB
- Μορφότυπο:
- Item-specific license agreed upon to submission
- Περιγραφή: