On vanishing at infinity solutions of higher order linear hyperbolic equations

dc.contributor.authorKiguradze, T.en
dc.contributor.authorStavroulakis, I. P.en
dc.date.accessioned2015-11-24T17:26:56Z
dc.date.available2015-11-24T17:26:56Z
dc.identifier.issn1025-5834-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/13287
dc.rightsDefault Licence-
dc.subjectvanishing at infinityen
dc.subjecthigher orderen
dc.subjecthyperbolicen
dc.subjectdifferential-equationsen
dc.titleOn vanishing at infinity solutions of higher order linear hyperbolic equationsen
heal.abstractIn the half strip D-b = (0, +infinity) x (0, b) the linear hyperbolic equation partial derivative(m+n)u/partial derivativex(m)partial derivativey(n) = p(0)(x,y)u + p(1) (y)partial derivative(m)u/partial derivativex(m) + p(2)(x) partial derivative(n)u/partial derivativey(n) with coefficients p(0) is an element of L-loc(2) (D-b), p(1) is an element of L-2([0, b]) and p(2) is an element of L-loc(2)(R) is considered. Sufficient conditions of existence of solutions to this equation satisfying the conditions partial derivative(k)u(x,y)/partial derivativey(k)\(y=0) = 0 (k = 0,...,n(0) - 1), partial derivative(k)u(x,y)/partial derivativey(k)\(y=0) = 0 (k = 0,...,n - n(0) - 1), partial derivative(j)u(x,y)/partial derivativex(j)\(x=0) = phi(j)(y), lim(x-->+infinity) partial derivative(j)u(x,y)/partial derivativex(j) = (j=0,...,m(0)-1) are established, where m(0) and n(0) are the integral parts of m/2 and n/2.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDoi 10.1080/1925583021000022360-
heal.identifier.secondary<Go to ISI>://000178524900004-
heal.journalNameJournal of Inequalities and Applicationsen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2002-
heal.publisherSpringerOpenen
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: