A reinforcement learning approach to online clustering
dc.contributor.author | Likas, A. | en |
dc.date.accessioned | 2015-11-24T17:03:08Z | |
dc.date.available | 2015-11-24T17:03:08Z | |
dc.identifier.issn | 0899-7667 | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/11133 | |
dc.rights | Default Licence | - |
dc.subject | vector quantization | en |
dc.subject | algorithms | en |
dc.title | A reinforcement learning approach to online clustering | en |
heal.abstract | A general technique is proposed for embedding online clustering algorithms based on competitive learning in a reinforcement learning framework. The basic idea is that the clustering system can be viewed as a reinforcement learning system that learns through reinforcements to follow the clustering strategy we wish to implement. In this sense, the reinforcement guided competitive learning (RC;CL) algorithm is proposed that constitutes a reinforcement-based adaptation of learning vector quantization (LVQ) with enhanced clustering capabilities. In addition, we suggest extensions of RGCL and LVQ that are characterized by the property of sustained exploration and significantly improve the performance of those algorithms, as indicated by experimental tests on well-known data sets. | en |
heal.access | campus | - |
heal.fullTextAvailability | TRUE | - |
heal.journalName | Neural Computation | en |
heal.journalType | peer reviewed | - |
heal.language | en | - |
heal.publicationDate | 1999 | - |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής | el |
heal.type | journalArticle | - |
heal.type.el | Άρθρο Περιοδικού | el |
heal.type.en | Journal article | en |
Αρχεία
Πρωτότυπος φάκελος/πακέτο
1 - 1 of 1
Φόρτωση...
- Ονομα:
- Likas-1999-A reinforcement learning approach to online clustering.pdf
- Μέγεθος:
- 177.35 KB
- Μορφότυπο:
- Adobe Portable Document Format
Φάκελος/Πακέτο αδειών
1 - 1 of 1
Φόρτωση...
- Ονομα:
- license.txt
- Μέγεθος:
- 1.74 KB
- Μορφότυπο:
- Item-specific license agreed upon to submission
- Περιγραφή: