Some information theoretic ideas useful in statistical inference

dc.contributor.authorPapaioannou, T.en
dc.contributor.authorFerentinos, K.en
dc.contributor.authorTsairidis, C.en
dc.date.accessioned2015-11-24T17:28:07Z
dc.date.available2015-11-24T17:28:07Z
dc.identifier.issn1387-5841-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/13506
dc.rightsDefault Licence-
dc.subjectinformation generating functionen
dc.subjectinformation optimum estimationen
dc.subjectinformation contenten
dc.subjectacid test propertiesen
dc.subjectquantal random censoringen
dc.subjectkoziol-green modelen
dc.subjecttruncated dataen
dc.subjectcharacterizations of fisher informationen
dc.subjectrandomly censored-dataen
dc.subjectfisher informationen
dc.subjectparametric modelsen
dc.subjecthazard rateen
dc.subjectfactorizationen
dc.titleSome information theoretic ideas useful in statistical inferenceen
heal.abstractIn this paper we discuss four information theoretic ideas and present their implications to statistical inference: (1) Fisher information and divergence generating functions, (2) information optimum unbiased estimators, (3) information content of various statistics, (4) characterizations based on Fisher information.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDOI 10.1007/s11009-007-9017-7-
heal.identifier.secondary<Go to ISI>://000246184800009-
heal.identifier.secondaryhttp://download.springer.com/static/pdf/486/art%253A10.1007%252Fs11009-007-9017-7.pdf?auth66=1385808199_ffeecfadc501dcace75c7712aba9db42&ext=.pdf-
heal.journalNameMethodology and Computing in Applied Probabilityen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2007-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: