The Genesis of an Impulsive Coronal Mass Ejection Observed at Ultra-High Cadence by Aia on Sdo
Loading...
Date
Authors
Patsourakos, S.
Vourlidas, A.
Stenborg, G.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Type
Type of the conference item
Journal type
peer reviewed
Educational material type
Conference Name
Journal name
Astrophysical Journal Letters
Book name
Book series
Book edition
Alternative title / Subtitle
Description
The study of fast, eruptive events in the low solar corona is one of the science objectives of the Atmospheric Imaging Assembly (AIA) imagers on the recently launched Solar Dynamics Observatory (SDO), which take full disk images in 10 wavelengths with arcsecond resolution and 12 s cadence. We study with AIA the formation of an impulsive coronal mass ejection (CME) which occurred on 2010 June 13 and was associated with an M1.0 class flare. Specifically, we analyze the formation of the CME EUV bubble and its initial dynamics and thermal evolution in the low corona using AIA images in three wavelengths (171 angstrom, 193 angstrom, and 211 angstrom). We derive the first ultra-high cadence measurements of the temporal evolution of the CME bubble aspect ratio (=bubble height/bubble radius). Our main result is that the CME formation undergoes three phases: it starts with a slow self-similar expansion followed by a fast but short-lived (similar to 70 s) period of strong lateral overexpansion which essentially creates the CME. Then the CME undergoes another phase of self-similar expansion until it exits the AIA field of view. During the studied interval, the CME height-time profile shows a strong, short-lived, acceleration followed by deceleration. The lateral overexpansion phase coincides with the deceleration phase. The impulsive flare heating and CME acceleration are closely coupled. However, the lateral overexpansion of the CME occurs during the declining phase and is therefore not linked to flare reconnection. In addition, the multi-thermal analysis of the bubble does not show significant evidence of temperature change.
Description
Keywords
sun: activity, sun: corona, sun: coronal mass ejections (cmes), acceleration, evolution, cmes
Subject classification
Citation
Link
<Go to ISI>://000284150700013
http://iopscience.iop.org/2041-8205/724/2/L188/pdf/2041-8205_724_2_L188.pdf
http://iopscience.iop.org/2041-8205/724/2/L188/pdf/2041-8205_724_2_L188.pdf
Language
en
Publishing department/division
Advisor name
Examining committee
General Description / Additional Comments
Institution and School/Department of submitter
Πανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών και Τεχνολογιών. Τμήμα Βιολογικών Εφαρμογών και Τεχνολογιών