Motif-based protein sequence classification using neural networks
Φόρτωση...
Ημερομηνία
Συγγραφείς
Blekas, K.
Fotiadis, D. I.
Likas, A.
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
Journal of Computational Biology
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
We present a system for multi-class protein classification based on neural networks. The basic issue concerning the construction of neural network systems for protein classification is the sequence encoding scheme that must be used in order to feed the neural network. To deal with this problem we propose a method that maps a protein sequence into a numerical feature space using the matching scores of the sequence to groups of conserved patterns (called motifs) into protein families. We consider two alternative ways for identifying the motifs to be used for feature generation and provide a comparative evaluation of the two schemes. We also evaluate the impact of the incorporation of background features (2-grams) on the performance of the neural system. Experimental results on real datasets indicate that the proposed method is highly efficient and is superior to other well-known methods for protein classification.
Περιγραφή
Λέξεις-κλειδιά
protein sequence classification, neural networks, probabilistic motifs, meme algorithm, motif-based features, hidden markov-models, homologies, alignment, database, search
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής