Variational Bayesian Sparse Kernel-Based Blind Image Deconvolution With Student's-t Priors
Φόρτωση...
Ημερομηνία
Συγγραφείς
Tzikas, D. G.
Likas, A. C.
Galatsanos, N. P.
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
Ieee Transactions on Image Processing
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
In this paper, we present a new Bayesian model for the blind Image deconvolution (BID) problem. The main novelty of this model is the use of a sparse kernel-based model for the point spread function (PSF) that allows estimation of both PSF shape and support. In the herein proposed approach, a robust model of the BID errors and an image prior that preserves edges of the reconstructed image are also used. Sparseness, robustness, and preservation of edges are achieved by using priors that are based on the Student's-t probability density function (PDF). This pdf, in addition to having heavy tails, Is closely related to the Gaussian and, thus, yields tractable inference algorithms. The approximate variational inference methodology is used to solve the corresponding Bayesian model. Numerical experiments are presented that compare this BID methodology to previous ones using both simulated and real data.
Περιγραφή
Λέξεις-κλειδιά
bayesian approach, blind image deconvolution (bid), inverse problem, kernel model, sparse prior, student-t distribution, restoration, regularization
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής