A topological characterization of the existence of non-empty choice sets

Φόρτωση...
Μικρογραφία εικόνας

Ημερομηνία

Συγγραφείς

Andrikopoulos, A.
Zacharias, E.

Τίτλος Εφημερίδας

Περιοδικό ISSN

Τίτλος τόμου

Εκδότης

Elsevier

Περίληψη

Τύπος

Είδος δημοσίευσης σε συνέδριο

Είδος περιοδικού

peer reviewed

Είδος εκπαιδευτικού υλικού

Όνομα συνεδρίου

Όνομα περιοδικού

Topology and its Applications

Όνομα βιβλίου

Σειρά βιβλίου

Έκδοση βιβλίου

Συμπληρωματικός/δευτερεύων τίτλος

Περιγραφή

The theory of optimal choice sets is a solution theory that has a long and well-established tradition in social choice and game theories. In this paper, we characterize the existence of the most important solution theories of arbitrary binary relations over non-finite sets of alternatives. More precisely, we present a topological characterization of the Smith and Schwartz sets. We also generalize results of the above solution theories for asymmetric binary relations defined in finite sets as well as most of the known results concerning the (characterization of the) existence of maximal elements of binary relations on compact spaces.

Περιγραφή

Λέξεις-κλειδιά

Upper semicontinuity, R-upper compactness, Generalized Optimal-Choice Axiom, Generalized Top-Choice Assumption, Smith set, Schwartz set, Maximal elements, Acyclicity

Θεματική κατηγορία

Παραπομπή

Σύνδεσμος

http://www.sciencedirect.com/science/article/pii/S0166864111005797

Γλώσσα

en

Εκδίδον τμήμα/τομέας

Όνομα επιβλέποντος

Εξεταστική επιτροπή

Γενική Περιγραφή / Σχόλια

Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος

Πανεπιστήμιο Ιωαννίνων. Σχολή Οικονομικών και Κοινωνικών Επιστημών. Τμήμα Οικονομικών Επιστημών

Πίνακας περιεχομένων

Χορηγός

Βιβλιογραφική αναφορά

Ονόματα συντελεστών

Αριθμός σελίδων

Λεπτομέρειες μαθήματος

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced