The Longest Path Problem has a Polynomial Solution on Interval Graphs

dc.contributor.authorIoannidou, K.en
dc.contributor.authorMertzios, G. B.en
dc.contributor.authorNikolopoulos, S. D.en
dc.date.accessioned2015-11-24T17:02:30Z
dc.date.available2015-11-24T17:02:30Z
dc.identifier.issn0178-4617-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/11062
dc.rightsDefault Licence-
dc.subjectlongest path problemen
dc.subjectinterval graphsen
dc.subjectpolynomial algorithmen
dc.subjectcomplexityen
dc.subjectdynamic programmingen
dc.subjectfinding hamiltonian circuitsen
dc.subjectalgorithmsen
dc.titleThe Longest Path Problem has a Polynomial Solution on Interval Graphsen
heal.abstractThe longest path problem is the problem of finding a path of maximum length in a graph. Polynomial solutions for this problem are known only for small classes of graphs, while it is NP-hard on general graphs, as it is a generalization of the Hamiltonian path problem. Motivated by the work of Uehara and Uno (Proc. of the 15th Annual International Symp. on Algorithms and Computation (ISAAC), LNCS, vol. 3341, pp. 871-883, 2004), where they left the longest path problem open for the class of interval graphs, in this paper we show that the problem can be solved in polynomial time on interval graphs. The proposed algorithm uses a dynamic programming approach and runs in O(n (4)) time, where n is the number of vertices of the input graph.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDOI 10.1007/s00453-010-9411-3-
heal.journalNameAlgorithmicaen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2011-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: