Parallel algorithms for Hamiltonian problems on quasi-threshold graphs
Φόρτωση...
Ημερομηνία
Συγγραφείς
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
Journal of Parallel and Distributed Computing
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
In this paper we show structural and algorithmic properties on the class of quasi-threshold graphs, or QT-graphs for short, and prove necessary and sufficient conditions for a QT-graph to be Hamiltonian. Based on these properties and conditions, we construct an efficient parallel algorithm for finding a Hamiltonian cycle in a QT-graph; for an input graph on n vertices and in edges, our algorithm takes O(log n) time and requires O(n + m) processors on the CREW PRAM model. In addition, we show that the problem of recognizing whether a QT-graph is a Hamiltonian graph and the problem of computing the Hamiltonian completion number of a nonHamiltonian QT-graph can also be solved in O(log n) time with O(n + in) processors. Our algorithms rely on O(log n)-time parallel algorithms, which we develop here, for constructing tree representations of a QT-graph; we show that a QT-graph G has a unique tree representation, that is, a tree structure which meets the structural properties of G. We also present parallel algorithms for other optimization problems on QT-graphs which run in O(log n) time using a linear number of processors. (C) 2003 Elsevier Inc. All rights reserved.
Περιγραφή
Λέξεις-κλειδιά
parallel algorithms, quasi-threshold graphs, recognition, tree representation, hamiltonian cycles, hamiltonian completion number, complexity, recognition algorithm, cographs
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής
