Selection of the best population: an information theoretic approach
Φόρτωση...
Ημερομηνία
Συγγραφείς
Menendez, M. L.
Pardo, L.
Tsairidis, C.
Zografos, K.
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Springer Verlag (Germany)
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
Metrika
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
This paper is devoted to the statistical problem of ranking and selection populations by using the subset selection formulation. The interest is focused (i) on the selection of the best population among k independent populations and (ii) on the selection of the best population, which is closest to an additional standard or control population. With respect to the first problem the populations are ranked in terms of entropies of their distributions and the population whose distribution has maximum entropy is selected. For the second problem the populations are ranked in terms of divergences between their distributions and the distribution of the standard or control population and the population with the minimum divergence is selected. In each case the populations are assumed to have general parametric densities satisfying the classical regularity conditions of asymptotic statistic. Large sample properties of the estimators of entropies and divergences of the populations will be studied and used in order to determine the probabilities of correct selection of the proposed asymptotic selection rules. Illustrative examples, including a numerical example using real medical data appeared-in the literature; will be given for multivariate homoscedastic normal populations and populations described by the regular exponential family of distributions.
Περιγραφή
Λέξεις-κλειδιά
divergence, entropy, exponential family, mahalanobis distance, multivariate normal distribution, ordering populations, selection of populations, subset selection approach, divergence, entropy
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
<Go to ISI>://000185844000002
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών