Ground- and Triplet Excited-State Properties Correlation: A Computational CASSCF/CASPT2 Approach Based on the Photodissociation of Allylsilanes
dc.contributor.author | Varras, P. C. | en |
dc.contributor.author | Zarkadis, A. K. | en |
dc.date.accessioned | 2015-11-24T16:38:31Z | |
dc.date.available | 2015-11-24T16:38:31Z | |
dc.identifier.issn | 1089-5639 | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/8056 | |
dc.rights | Default Licence | - |
dc.subject | cis-trans isomerization | en |
dc.subject | nonperfect synchronization | en |
dc.subject | triphenylmethyl radicals | en |
dc.subject | substituent constants | en |
dc.subject | chemical-reactivity | en |
dc.subject | activation-energies | en |
dc.subject | perturbation-theory | en |
dc.subject | bond | en |
dc.subject | barriers | en |
dc.subject | photochemistry | en |
dc.title | Ground- and Triplet Excited-State Properties Correlation: A Computational CASSCF/CASPT2 Approach Based on the Photodissociation of Allylsilanes | en |
heal.abstract | Excited-state properties, although extremely useful, are hardly accessible. One indirect way would be to derive them from relationships to ground-state properties which are usually more readily available. Herewith, we present quantitative correlations between triplet excited-state (T-1) properties (bond dissociation energy, D-0(T1), homolytic activation energy, E-a(T1), and rate constant, k(r)) and the ground-state bond dissociation energy (D-0), taking as an example the photodissociation of the C-Si bond of simple substituted allylsilanes CH2=CHC((RR2)-R-1)-SiH3 (R-1 and R-2 = H, Me, and Et). By applying the complete-active-space self-consistent field CASSCF(6,6) and CASPT2(6,6) quantum chemical methodologies, we have found that the consecutive introduction of Me/Et groups has little effect on the geometry and energy of the T-1 state; however, it reduces the magnitudes of D-0, D-0(T1) and E-a(T1). Moreover, these energetic parameters have been plotted giving good linear correlations: D-0(T1) = alpha(1) + beta(1) . D-0, E-a(T1) = alpha(2) + beta(2) . D-0(T1), and E-a(T1) = alpha(3) + beta(3) . D-0 (alpha and beta being constants), while k(r) correlates very well to E-a(T1). The key factor behind these useful correlations is the validity of the Evans-Polanyi-Semenov relation (second equation) and its extended form (third equation) applied for excited systems. Additionally, the unexpectedly high values obtained for E-a(T1) demonstrate a new application of the principle of nonperfect synchronization (PNS) in excited-state chemistry issues. | en |
heal.access | campus | - |
heal.fullTextAvailability | TRUE | - |
heal.identifier.primary | Doi 10.1021/Jp209583z | - |
heal.identifier.secondary | <Go to ISI>://000299985100013 | - |
heal.identifier.secondary | http://pubs.acs.org/doi/pdfplus/10.1021/jp209583z | - |
heal.journalName | Journal of Physical Chemistry A | en |
heal.journalType | peer reviewed | - |
heal.language | en | - |
heal.publicationDate | 2012 | - |
heal.publisher | American Chemical Society | en |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Χημείας | el |
heal.type | journalArticle | - |
heal.type.el | Άρθρο Περιοδικού | el |
heal.type.en | Journal article | en |
Αρχεία
Φάκελος/Πακέτο αδειών
1 - 1 of 1
Φόρτωση...
- Ονομα:
- license.txt
- Μέγεθος:
- 1.74 KB
- Μορφότυπο:
- Item-specific license agreed upon to submission
- Περιγραφή: