Unsupervised learning of Gaussian mixtures based on variational component splitting
Φόρτωση...
Ημερομηνία
Συγγραφείς
Constantinopoulos, C.
Likas, A.
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
Ieee Transactions on Neural Networks
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
In this paper, we present an incremental method for model selection and learning of Gaussian mixtures based on the recently proposed variational Bayes approach. The method adds components to the mixture using a Bayesian splitting test procedure: a component is split into two components and then variational update equations are applied only to the parameters of the two components. As a result, either both components are retained in the model or one of them is found to be redundant and is eliminated from the model. In our approach, the model selection problem is treated locally, in a region of the data space, so we can set more informative priors based on the local data distribution. A modified Bayesian mixture model is presented to implement this approach, along with a learning algorithm that iteratively applies a splitting test on each mixture component. Experimental results and comparisons with two other techniques testify for the adequacy of the proposed approach.
Περιγραφή
Λέξεις-κλειδιά
clustering, mixture models, model selection, variational bayes methods, model selection, likelihood, algorithm, network, em
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής