A Regression Mixture Model with Spatial Constraints for Clustering Spatiotemporal Data

dc.contributor.authorBlekas, K.en
dc.contributor.authorNikou, C.en
dc.contributor.authorGalatsanos, N.en
dc.contributor.authorTsekos, N. V.en
dc.date.accessioned2015-11-24T17:01:44Z
dc.date.available2015-11-24T17:01:44Z
dc.identifier.issn0218-2130-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/10970
dc.rightsDefault Licence-
dc.subjectregression mixture modelen
dc.subjectcurve clusteringen
dc.subjectexpectation maximizationen
dc.subjectmarkov random fielden
dc.subjectsmoothness prioren
dc.subjectmaximum-likelihooden
dc.subjectimage-restorationen
dc.subjectcontrast agenten
dc.subjectem algorithmen
dc.subjectsegmentationen
dc.titleA Regression Mixture Model with Spatial Constraints for Clustering Spatiotemporal Dataen
heal.abstractWe present a new approach for curve clustering designed for analysis of spatiotemporal data. Such data contains both spatial and temporal patterns that we desire to capture. The proposed methodology is based on regression and Gaussian mixture modeling. The novelty of the here in work is the incorporation of spatial smoothness constraints in the form of a prior for the data labels. This allows to take into account the property of spatiotemporal data according to which spatially adjacent data points have higher probability to belong to the same cluster. The proposed model can be formulated as a Maximum a Posteriori (MAP) problem, where the Expectation Maximization (EM) algorithm is used to estimate the model parameters. Several numerical experiments with both simulated data and real cardiac perfusion MRI data are used for evaluating the methodology. The results are promising and demonstrate the value of the proposed approachen
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.journalNameInternational Journal on Artificial Intelligence Toolsen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2008-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: