A framework for fuzzy expert system creation - Application to cardiovascular diseases

dc.contributor.authorTsipouras, M. G.en
dc.contributor.authorVoglis, C.en
dc.contributor.authorFotiadis, D. I.en
dc.date.accessioned2015-11-24T17:32:06Z
dc.date.available2015-11-24T17:32:06Z
dc.identifier.issn0018-9294-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/13670
dc.rightsDefault Licence-
dc.subjectarrhythmic beat classificationen
dc.subjectexpert systemsen
dc.subjectfuzzy modelingen
dc.subjectischemic beat classificationen
dc.subjectst-t databaseen
dc.subjectneural-networksen
dc.subjectischemia detectionen
dc.subjectbeat classificationen
dc.subjectoptimizationen
dc.subjectrecognitionen
dc.subjectepisodesen
dc.subjectsignalen
dc.titleA framework for fuzzy expert system creation - Application to cardiovascular diseasesen
heal.abstractA methodology for the automated development of fuzzy expert systems is presented. The idea is to start with a crisp model described by crisp rules and then transform them into a set of fuzzy rules, thus creating a fuzzy model. The adjustment of the model's parameters is performed via a stochastic global optimization procedure. The proposed methodology is tested by applying it to problems related to cardiovascular diseases, such as automated arrhythmic beat classification and automated ischemic beat classification, which, besides being well-known benchmarks, are of particular interest due to their obvious medical diagnostic importance. For both problems, the initial set of rules was determined by expert cardiologists, and the MIT-BIH arrhythmia database and the European ST-T database are used for optimizing the fuzzy model's parameters and evaluating the fuzzy expert system. In both cases, the results indicate an escalation of the performance from the simple initial crisp model to the more sophisticated fuzzy models, proving the scientific added value of the proposed framework. Also, the ability to interpret the decisions of the created fuzzy expert systems is a major advantage compared to "black box" approaches, such as neural networks and other techniques.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDoi 10.1109/Tbme.2007.893500-
heal.identifier.secondary<Go to ISI>://000250449200020-
heal.journalNameIeee Transactions on Biomedical Engineeringen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2007-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Επιστήμης Υλικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: