Best Cyclic Repartitioning for Optimal Successive Overrelaxation Convergence

dc.contributor.authorGalanis, S.en
dc.contributor.authorHadjidimos, A.en
dc.date.accessioned2015-11-24T17:22:15Z
dc.date.available2015-11-24T17:22:15Z
dc.identifier.issn0895-4798-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/12585
dc.rightsDefault Licence-
dc.subjectiterative solution of linear systemsen
dc.subjectsuccessive overrelaxation (sor) iterative methoden
dc.subjectblock p-cyclic consistently ordered matricesen
dc.subjectoptimal relaxation factoren
dc.subjectleast-squares problemsen
dc.subjectiterative methodsen
dc.subjectlinear-systemsen
dc.subjectmatricesen
dc.subjectsoren
dc.titleBest Cyclic Repartitioning for Optimal Successive Overrelaxation Convergenceen
heal.abstractIn this paper, the successive overrelaxation (SOR) method for the solution of a linear system whose matrix coefficient A is block p-cyclic consistently ordered is discussed. In recent works, many researchers considered some "natural" assumptions on the spectrum sigma(J(p)) of the block Jacobi matrix J(p) associated with A and answered the following question: What is the repartitioning of A into a block q-cyclic form (2 less-than-or-equal-to q less-than-or-equal-to p) which yields the best optimal SOR method for the solution of the given system? In this paper, the same question is answered in the most general case considered so far, that is, under the assumption sigma(J(p)p) subset-of [- alpha(p), beta(p)] subset-or R\ {[1, infinity)}, alpha, beta greater-than-or-equal-to 0. It is also shown that the results in all previous works are recovered as particular subcases of the case considered here.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.secondary<Go to ISI>://A1992HC84600010-
heal.journalNameSiam Journal on Matrix Analysis and Applicationsen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate1992-
heal.publisherSociety for Industrial and Applied Mathematicsen
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: