An analytic distance metric for Gaussian mixture models with application in image retrieval
Φόρτωση...
Ημερομηνία
Συγγραφείς
Sfikas, G.
Constantinopoulos, C.
Likas, A.
Galatsanos, N. P.
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
Artificial Neural Networks: Formal Models and Their Applications - Icann 2005, Pt 2, Proceedings
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
In this paper we propose a new distance metric for probability density functions (PDF). The main advantage of this metric is that unlike the popular Kullback-Liebler (KL) divergence it can be computed in closed form when the PDFs are modeled as Gaussian Mixtures (GM). The application in mind for this metric is histogram based image retrieval. We experimentally show that in an image retrieval scenario the proposed metric provides as good results as the KL divergence at a fraction of the computational cost. This metric is also compared to a Bhattacharyya-based distance metric that can be computed in closed form for GMs and is found to produce better results.
Περιγραφή
Λέξεις-κλειδιά
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής