An ischemia detection method based on artificial neural networks

dc.contributor.authorPapaloukas, C.en
dc.contributor.authorFotiadis, D. I.en
dc.contributor.authorLikas, A.en
dc.contributor.authorMichalis, L. K.en
dc.date.accessioned2015-11-24T17:32:04Z
dc.date.available2015-11-24T17:32:04Z
dc.identifier.issn0933-3657-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/13666
dc.rightsDefault Licence-
dc.subjectischemic episode detectionen
dc.subjectcardiac beat classificationsen
dc.subjectartificial neural networksen
dc.subjectbayesian regularisationen
dc.subjectecg analysisen
dc.titleAn ischemia detection method based on artificial neural networksen
heal.abstractAn automated technique was developed for the detection of ischemic episodes in long duration electrocardiographic (ECG) recordings that employs an artificial neural network. In order to train the network for beat classification, a cardiac beat dataset was constructed based on recordings from the European Society of Cardiology (ESC) ST-T database. The network was trained using a Bayesian regularisation method. The raw ECG signal containing the ST segment and the T wave of each beat were the inputs to the beat classification system and the output was the classification of the beat. The input to the network was produced through a principal component analysis (PCA) to achieve dimensionality reduction. The network performance in beat classification was tested on the cardiac beat database providing 90% sensitivity (Se) and 90% specificity (Sp). The neural beat classifier is integrated in a four-stage procedure for ischemic episode detection. The whole system was evaluated on the ESC ST-T database. When aggregate gross statistics was used the Se was 90% and the positive predictive accuracy (PPA) 89%. When aggregate average statistics was used the Se became 86% and the PPA 87%. These results are better than other reported. (C) 2002 Elsevier Science B.V. All rights reserved.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.secondary<Go to ISI>://000173874300004-
heal.identifier.secondaryhttp://ac.els-cdn.com/S0933365701001002/1-s2.0-S0933365701001002-main.pdf?_tid=cfaa4a29ca4dd7995b72c81c435684da&acdnat=1339758359_5f07a5d8cd94520d856cee52ed8106f6-
heal.journalNameArtif Intell Meden
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2002-
heal.publisherElsevieren
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Επιστήμης Υλικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: