Comparison of measured parameters from a 24-keV and a broad spectrum epithermal neutron beam for neutron capture therapy: an identification of consequential parameters

dc.contributor.authorFairchild, R. G.en
dc.contributor.authorSaraf, S. K.en
dc.contributor.authorKalef-Ezra, J.en
dc.contributor.authorLaster, B. H.en
dc.date.accessioned2015-11-24T19:28:32Z
dc.date.available2015-11-24T19:28:32Z
dc.identifier.issn0094-2405-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/22906
dc.rightsDefault Licence-
dc.subjectBiophysical Phenomenaen
dc.subjectBiophysicsen
dc.subjectBrain Neoplasms/radiotherapyen
dc.subjectEvaluation Studies as Topicen
dc.subjectFast Neutrons/therapeutic useen
dc.subjectHumansen
dc.subject*Neutronsen
dc.subjectRadiotherapy Dosageen
dc.subjectRelative Biological Effectivenessen
dc.titleComparison of measured parameters from a 24-keV and a broad spectrum epithermal neutron beam for neutron capture therapy: an identification of consequential parametersen
heal.abstractEpithermal neutron beams are under development in a number of locations in the U.S. and abroad. The increased penetration in tissue provided by these neurons should circumvent problems associated with the rapid attenuation of thermal neutron beams encountered in previous clinical trials of neutron capture therapy (NCT). Physical and radiobiological experiments with two "intermediate energy" or "epithermal" beams have been reported. A comparison is made here between the 24-keV iron-filtered beam at Harwell, England, and the broad-spectrum Al2 O3 moderated beam at the Brookhaven Medical Research Reactor (BMRR). In addition, parameters which are relevant for NCT, and which are best suited for evaluation and comparison of beams, are discussed. Particular attention is paid to the mean neutron energy which can be tolerated without significant reduction of therapeutic gain (TG), where TG is the ratio of tumor dose to maximum normal tissue dose. It is suggested that the simplest and most meaningful parameters for comparison of beam intensity and purity are the epithermal neutron fluence rate, and the fast neutron dose per epithermal neutron (4.2 X 10(-11) rad/neutron for the broad-spectrum beam and 29 X 10(-11) rad/neutron for the 24-keV beam). While the Al2O3 beam is close to optimal, the 24-keV beam produces a significant fast neutron dose which results in a lower TG.(ABSTRACT TRUNCATED AT 250 WORDS)en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.secondaryhttp://www.ncbi.nlm.nih.gov/pubmed/2280734-
heal.identifier.secondaryhttp://link.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=MPHYA6000017000006001045000001-
heal.journalNameMed Physen
heal.journalTypepeer-reviewed-
heal.languageen-
heal.publicationDate1990-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών Υγείας. Τμήμα Ιατρικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: