Neural network-based segmentation and classification system for automated grading of histologic sections of bladder carcinoma
Φόρτωση...
Ημερομηνία
Συγγραφείς
Spyridonos, P.
Cavouras, D.
Ravazoula, P.
Nikiforidis, G.
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer-reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
Anal Quant Cytol Histol
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
OBJECTIVE: To develop an image analysis system for automated nuclear segmentation and classification of histologic bladder sections employing quantitative nuclear features. STUDY DESIGN: Ninety-two cases were classified into three classes by experienced pathologists according to the WHO grading system: 18 cases as grade 1, 45 as grade 2, and 29 as grade 3. Nuclear segmentation was performed by means of an artificial neural network (ANN)-based pixel classification algorithm, and each case was represented by 36 nuclei features. Automated grading of bladder tumor histologic sections was performed by an ANN classifier implemented in a two-stage hierarchic tree. RESULTS: On average, 95% of the nuclei were correctly detected. At the first stage of the hierarchic tree, classifier performance in discriminating between cases of grade 1 and 2 and cases of grade 3 was 89%. At the second stage, 79% of grade 1 cases were correctly distinguished from grade 2 cases. CONCLUSION: The proposed image analysis system provides the means to reduce subjectivity in grading bladder tumors and may contribute to more accurate diagnosis and prognosis since it relies on nuclear features, the value of which has been confirmed.
Περιγραφή
Λέξεις-κλειδιά
Algorithms, Automation, Carcinoma/*classification/*pathology/ultrastructure, Cell Nucleus/ultrastructure, Diagnosis, Computer-Assisted/methods, Histological Techniques, Humans, Image Processing, Computer-Assisted/methods, *Neural Networks (Computer), Tumor Markers, Biological/analysis, Urinary Bladder Neoplasms/*classification/*pathology/ultrastructure
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
http://www.ncbi.nlm.nih.gov/pubmed/12508689
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών Υγείας. Τμήμα Ιατρικής