All-port total exchange in cartesian product networks

Φόρτωση...
Μικρογραφία εικόνας

Ημερομηνία

Συγγραφείς

Dimakopoulos, V. V.

Τίτλος Εφημερίδας

Περιοδικό ISSN

Τίτλος τόμου

Εκδότης

Περίληψη

Τύπος

Είδος δημοσίευσης σε συνέδριο

Είδος περιοδικού

peer reviewed

Είδος εκπαιδευτικού υλικού

Όνομα συνεδρίου

Όνομα περιοδικού

Journal of Parallel and Distributed Computing

Όνομα βιβλίου

Σειρά βιβλίου

Έκδοση βιβλίου

Συμπληρωματικός/δευτερεύων τίτλος

Περιγραφή

We present a general solution to the total exchange (TE) communication problem for any homogeneous multidimensional network under the all-port assumption. More specifically, we consider cartesian product networks where every dimension is the same graph (e.g. hypercubes, square meshes, n-ary d-cubes) and where each node is able to communicate simultaneously with all its neighbors. We show that if we are given an algorithm for a single n-node dimension which requires T steps, we can construct an algorithm for d-dimensions and running time of n(d-1)T steps, which is provably optimal for many popular topologies. Our scheme, in effect, generalizes the TE algorithm given by Bertsekas et al. (J. Parallel Distrib. Comput. 11 (1991) 263-275) for the hypercubes and complements our theory (IEEE Trans. Parallel Distrib. Systems 9(7) (1998) 639) for the single-port model. (C) 2004 Elsevier Inc. All rights reserved.

Περιγραφή

Λέξεις-κλειδιά

collective communications, interconnection networks, cartesian product networks, all-port model, total exchange, personalized communication, algorithms, hypercubes, meshes, tori

Θεματική κατηγορία

Παραπομπή

Σύνδεσμος

Γλώσσα

en

Εκδίδον τμήμα/τομέας

Όνομα επιβλέποντος

Εξεταστική επιτροπή

Γενική Περιγραφή / Σχόλια

Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος

Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής

Πίνακας περιεχομένων

Χορηγός

Βιβλιογραφική αναφορά

Ονόματα συντελεστών

Αριθμός σελίδων

Λεπτομέρειες μαθήματος

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced