Dispersive evolution of pulses in oscillator chains with general interaction potentials
Φόρτωση...
Ημερομηνία
Συγγραφείς
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
American Institute of Mathematical Sciences
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
Discrete and Continuous Dynamical Systems-Series B
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
We study the dispersive evolution of modulated pulses in a nonlinear oscillator chain embedded in a background field. The atoms of the chain interact pairwise with an arbitrary but finite number of neighbors. The pulses are modeled as macroscopic modulations of the exact spatiotemporally periodic solutions of the linearized model. The scaling of amplitude, space and time is chosen in such a way that we can describe how the envelope changes in time due to dispersive effects. By this multiscale ansatz we find that the macroscopic evolution of the amplitude is given by the nonlinear Schrodinger equation. The main part of the work is focused on the justification of the formally derived equation: We show that solutions which have initially the form of the assumed ansatz preserve this form over time-intervals with a positive macroscopic length. The proof is based on a normal-form transformation constructed in Fourier space, and the results depend on the validity of suitable nonresonance conditions.
Περιγραφή
Λέξεις-κλειδιά
nonlinear oscillator chain, multiscale theory, modulational theory, nonlinear schrodinger equation, normal-form transformation, nonresonance conditions, fermi-pasta-ulam, nonlinear schrodinger-equation, stress-strain relations, solitary waves, traveling-waves, cubic nonlinearities, envelope solitons, fpu lattices, modulation, existence
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
<Go to ISI>://000235317200005
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών
