Active learning with the probabilistic RBF classifier

dc.contributor.authorConstantinopoulos, C.en
dc.contributor.authorLikas, A.en
dc.date.accessioned2015-11-24T17:01:15Z
dc.date.available2015-11-24T17:01:15Z
dc.identifier.issn0302-9743-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/10896
dc.rightsDefault Licence-
dc.subjectmixture modelen
dc.subjectalgorithmen
dc.titleActive learning with the probabilistic RBF classifieren
heal.abstractIn this work we present an active learning methodology for training the probabilistic RBF (PRBF) network. It is a special case of the RBF network, and constitutes a generalization of the Gaussian mixture model. We propose an incremental method for semi-supervised learning based on the Expectation-Maximization (EM) algorithm. Then we present an active learning method that iteratively applies the semi-supervised method for learning the labeled and unlabeled observations concurrently, and then employs a suitable criterion to select an unlabeled observation and query its label. The proposed criterion selects points near the decision boundary, and facilitates the incremental semi-supervised learning that also exploits the decision boundary. The performance of the algorithm in experiments using well-known data sets is promising.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.journalNameArtificial Neural Networks - Icann 2006,en
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2006-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: