Heterogeneity testing in meta-analysis of genome searches

Φόρτωση...
Μικρογραφία εικόνας

Ημερομηνία

Συγγραφείς

Zintzaras, E.
Ioannidis, J. P.

Τίτλος Εφημερίδας

Περιοδικό ISSN

Τίτλος τόμου

Εκδότης

Περίληψη

Τύπος

Είδος δημοσίευσης σε συνέδριο

Είδος περιοδικού

peer-reviewed

Είδος εκπαιδευτικού υλικού

Όνομα συνεδρίου

Όνομα περιοδικού

Genet Epidemiol

Όνομα βιβλίου

Σειρά βιβλίου

Έκδοση βιβλίου

Συμπληρωματικός/δευτερεύων τίτλος

Περιγραφή

Genome searches for identifying susceptibility loci for the same complex disease often give inconclusive or inconsistent results. Genome Search Meta-analysis (GSMA) is an established non-parametric method to identify genetic regions that rank high on average in terms of linkage statistics (e.g., lod scores) across studies. Meta-analysis typically aims not only to obtain average estimates, but also to quantify heterogeneity. However, heterogeneity testing between studies included in GSMA has not been developed yet. Heterogeneity may be produced by differences in study designs, study populations, and chance, and the extent of heterogeneity might influence the conclusions of a meta-analysis. Here, we propose and explore metrics that indicate the extent of heterogeneity for specific loci in GSMA based on Monte Carlo permutation tests. We have also developed software that performs both the GSMA and the heterogeneity testing. To illustrate the concept, the proposed methodology was applied to published data from meta-analyses of rheumatoid arthritis (4 scans) and schizophrenia (20 scans). In the first meta-analysis, we identified 11 bins with statistically low heterogeneity and 8 with statistically high heterogeneity. The respective numbers were 9 and 6 for the schizophrenia meta-analysis. For rheumatoid arthritis, bins 6.2 (the HLA region that is a well-documented susceptibility locus for the disease) and 16.3 (16q12.2-q23.1) had both high average ranks and low between-study heterogeneity. For schizophrenia, this was seen for bin 3.2 (3p25.3-p22.1) and heterogeneity was still significantly low after adjusting for its high average rank. Concordance was high between the proposed metrics and between weighted and unweighted analyses. Data from genome searches should be synthesized and interpreted considering both average ranks and heterogeneity between studies.

Περιγραφή

Λέξεις-κλειδιά

Arthritis, Rheumatoid/*genetics, Genetic Predisposition to Disease, *Genome, Human, Humans, Lod Score, *Meta-Analysis as Topic, Monte Carlo Method, Schizophrenia/*genetics

Θεματική κατηγορία

Παραπομπή

Σύνδεσμος

http://www.ncbi.nlm.nih.gov/pubmed/15593093
http://onlinelibrary.wiley.com/store/10.1002/gepi.20048/asset/20048_ftp.pdf?v=1&t=h0jem7bj&s=a49a27d8dce8c08f199e4b23f983e34525abe76c

Γλώσσα

en

Εκδίδον τμήμα/τομέας

Όνομα επιβλέποντος

Εξεταστική επιτροπή

Γενική Περιγραφή / Σχόλια

Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος

Πανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών Υγείας. Τμήμα Ιατρικής

Πίνακας περιεχομένων

Χορηγός

Βιβλιογραφική αναφορά

Ονόματα συντελεστών

Αριθμός σελίδων

Λεπτομέρειες μαθήματος

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced