Protein sequence classification using probabilistic motifs and neural networks
Φόρτωση...
Ημερομηνία
Συγγραφείς
Blekas, K.
Fotiadis, D. I.
Likas, A.
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
Artificail Neural Networks and Neural Information Processing - Ican/Iconip 2003
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
The basic issue concerning the construction of neural network systems for protein classification is the sequence encoding scheme that must be used in order to feed the network. To deal with this problem we propose a method that maps a protein sequence into a numerical feature space using the matching local scores of the sequence to groups of conserved patterns (called motifs). We consider two alternative schemes for discovering a group of D motifs within a set of K-class sequences. We also evaluate the impact of the background features (2-grams) to the performance of the neural system. Experimental results on real datasets indicate that the proposed method is superior to other known protein classification approaches.
Περιγραφή
Λέξεις-κλειδιά
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής