Protein sequence classification using probabilistic motifs and neural networks

Φόρτωση...
Μικρογραφία εικόνας

Ημερομηνία

Συγγραφείς

Blekas, K.
Fotiadis, D. I.
Likas, A.

Τίτλος Εφημερίδας

Περιοδικό ISSN

Τίτλος τόμου

Εκδότης

Περίληψη

Τύπος

Είδος δημοσίευσης σε συνέδριο

Είδος περιοδικού

peer reviewed

Είδος εκπαιδευτικού υλικού

Όνομα συνεδρίου

Όνομα περιοδικού

Artificail Neural Networks and Neural Information Processing - Ican/Iconip 2003

Όνομα βιβλίου

Σειρά βιβλίου

Έκδοση βιβλίου

Συμπληρωματικός/δευτερεύων τίτλος

Περιγραφή

The basic issue concerning the construction of neural network systems for protein classification is the sequence encoding scheme that must be used in order to feed the network. To deal with this problem we propose a method that maps a protein sequence into a numerical feature space using the matching local scores of the sequence to groups of conserved patterns (called motifs). We consider two alternative schemes for discovering a group of D motifs within a set of K-class sequences. We also evaluate the impact of the background features (2-grams) to the performance of the neural system. Experimental results on real datasets indicate that the proposed method is superior to other known protein classification approaches.

Περιγραφή

Λέξεις-κλειδιά

Θεματική κατηγορία

Παραπομπή

Σύνδεσμος

Γλώσσα

en

Εκδίδον τμήμα/τομέας

Όνομα επιβλέποντος

Εξεταστική επιτροπή

Γενική Περιγραφή / Σχόλια

Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος

Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής

Πίνακας περιεχομένων

Χορηγός

Βιβλιογραφική αναφορά

Ονόματα συντελεστών

Αριθμός σελίδων

Λεπτομέρειες μαθήματος

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced