Sensitivity of the acoustic scattering problem in prolate spheroidal geometry with respect to wavenumber and shape

dc.contributor.authorKourounis, D.en
dc.contributor.authorGergidis, L. N.en
dc.contributor.authorCharalambopoulos, A.en
dc.date.accessioned2015-11-24T17:38:10Z
dc.date.available2015-11-24T17:38:10Z
dc.identifier.issn1526-1492-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/14452
dc.rightsDefault Licence-
dc.subjectprolate spheroiden
dc.subjectacoustic scatteringen
dc.subjectvekua transformationen
dc.subjectarbitrary precisionen
dc.subjectl-2-norm minimizationen
dc.subjectmathematical modelingen
dc.subjectnumerical acousticsen
dc.subjectscientific computingen
dc.subjectboundary integral-equationsen
dc.subjectelement methoden
dc.subjectformulationen
dc.subjectmatrixen
dc.titleSensitivity of the acoustic scattering problem in prolate spheroidal geometry with respect to wavenumber and shapeen
heal.abstractThe sensitivity of analytical solutions of the direct acoustic scattering problem in prolate spheroidal geometry on the wavenumher and shape, is extensively investigated in this work. Using the well known Vekua transformation and the complete set of radiating "outwards" elgensolutions of the Helmholtz equation, introduced in our previous work ([Charalambopoulos and Dassios (2002)],[Gergidis, Kourounis, Mavratzas, and Charalambopoulos (2007)]), the scattered field is expanded in terms of it, detouring so the standard spheroidal wave functions along with their inherent numerical deficiencies. An approach is employed for the determination of the expansion coefficients, which is optimal in the sense, that minimizes the L-2 norm of the error related to the satisfaction of the boundary condition on the surface of the scatterer. The study of the conditioning of the matrices involved in the linear systems, the solution of which provides the expansion coefficients, reveals the need for implication of numerical implementations using arbitrary precision arithmetics. Numerical and convergence properties estimations such as condition numbers, L-2 and L-infinity error norms prove the robustness of the adopted methodology. A study of the dependence of the error with respect to geometrical, physical and numerical parameters is developed. Three dimensional representation of the L-2 norm clarifies the distribution of errors on the scatterer's surface.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.secondary<Go to ISI>://000258303500003-
heal.journalNameCmes-Computer Modeling in Engineering & Sciencesen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2008-
heal.publisherTech Science Pressen
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Επιστήμης Υλικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: