Numerical approximation of blow-up of radially symmetric solutions of the nonlinear Schrodinger equation

dc.contributor.authorAkrivis, G. D.en
dc.contributor.authorDougalis, V. A.en
dc.contributor.authorKarakashian, O. A.en
dc.contributor.authorMcKinney, W. R.en
dc.date.accessioned2015-11-24T17:00:20Z
dc.date.available2015-11-24T17:00:20Z
dc.identifier.issn1064-8275-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/10750
dc.rightsDefault Licence-
dc.subjectnonlinear schrodinger equationen
dc.subjectpoint blow-upen
dc.subjectfinite element methodsen
dc.subjectadaptive mesh refinementen
dc.subjectself-focusing singularityen
dc.subjectcritical dimensionen
dc.subjectcauchy-problemen
dc.subjectsimulationen
dc.subjectcollapseen
dc.subjectmediaen
dc.subjectbeamsen
dc.titleNumerical approximation of blow-up of radially symmetric solutions of the nonlinear Schrodinger equationen
heal.abstractWe consider the initial-value problem for the radially symmetric nonlinear Schrodinger equation with cubic nonlinearity (NLS) in d = 2 and 3 space dimensions. To approximate smooth solutions of this problem, we construct and analyze a numerical method based on a standard Galerkin finite element spatial discretization with piecewise linear, continuous functions and on an implicit Crank-Nicolson type time-stepping procedure. We then equip this scheme with an adaptive spatial and temporal mesh refinement mechanism that enables the numerical technique to approximate well singular solutions of the NLS equation that blow up at the origin as the temporal variable t tends from below to a finite value t(star). For the blow-up of the amplitude of the solution we recover numerically the well-known rate (t(star)- t)(-1/2) for d = 3. For d = 2 our numericalevidence supports the validity of the log log law [ln ln 1/t(star)-t/(t(star)- t)](1/2) for t extremely close to t(star). The scheme also approximates well the details of the blow-up of the phase of the solution at the origin as t --> t(star).en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDoi 10.1137/S1064827597332041-
heal.journalNameSiam Journal on Scientific Computingen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2003-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Πρωτότυπος φάκελος/πακέτο

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
akrivis-2003-Numerical approximation of blow-up of radially symmetric solutions of the nonlinear Schrodinger equation.pdf
Μέγεθος:
320.17 KB
Μορφότυπο:
Adobe Portable Document Format

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: