Maximizing the number of spanning trees in K-n-complements of asteroidal graphs

dc.contributor.authorNikolopoulos, S. D.en
dc.contributor.authorPalios, L.en
dc.contributor.authorPapadopoulos, C.en
dc.date.accessioned2015-11-24T17:25:14Z
dc.date.available2015-11-24T17:25:14Z
dc.identifier.issn0012-365X-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/13010
dc.rightsDefault Licence-
dc.subjectspanning treesen
dc.subjectcomplement-spanning-tree matrixen
dc.subjectstar-like graphsen
dc.subjectmaximizationen
dc.subjectinterconnection networksen
dc.subjectpolynomialsen
dc.subjectcirculanten
dc.titleMaximizing the number of spanning trees in K-n-complements of asteroidal graphsen
heal.abstractIn this paper we introduce the class of graphs whose complements are asteroidal (star-like) graphs and derive closed formulas for the number of spanning trees of its members. The proposed results extend previous results for the classes of the multi-star and multi-complete/star graphs. Additionally, we prove maximization theorems that enable us to characterize the graphs whose complements are asteroidal graphs and possess a maximum number of spanning trees. (C) 2008 Elsevier B.V. All rights reserved.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDOI 10.1016/j.disc.2008.08.008-
heal.identifier.secondary<Go to ISI>://000266654300012-
heal.identifier.secondaryhttp://ac.els-cdn.com/S0012365X08005037/1-s2.0-S0012365X08005037-main.pdf?_tid=156ea4688448293e706b0db8b2b23461&acdnat=1339410006_ccc83e02bc113c0462bc77f0f623c468-
heal.journalNameDiscrete Mathematicsen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2009-
heal.publisherElsevieren
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: