Minimal surfaces, Hopf differentials and the Ricci condition

dc.contributor.authorVlachos, T.en
dc.date.accessioned2015-11-24T17:25:23Z
dc.date.available2015-11-24T17:25:23Z
dc.identifier.issn0025-2611-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/13034
dc.rightsDefault Licence-
dc.subjectimmersionsen
dc.subjectequationsen
dc.subjectformsen
dc.titleMinimal surfaces, Hopf differentials and the Ricci conditionen
heal.abstractWe deal with minimal surfaces in a sphere and investigate certain invariants of geometric significance, the Hopf differentials, which are defined in terms of the complex structure and the higher fundamental forms. We discuss the holomorphicity of Hopf differentials and provide a geometric interpretation for it in terms of the higher curvature ellipses. This motivates the study of a class of minimal surfaces, which we call exceptional. We show that exceptional minimal surfaces are related to Lawson's conjecture regarding the Ricci condition. Indeed, we prove that, under certain conditions, compact minimal surfaces in spheres which satisfy the Ricci condition are exceptional. Thus, under these conditions, the proof of Lawson's conjecture is reduced to its confirmation for exceptional minimal surfaces. In fact, we provide an affirmative answer to Lawson's conjecture for exceptional minimal surfaces in odd dimensional spheres or in S(4m).en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDOI 10.1007/s00229-008-0174-y-
heal.identifier.secondary<Go to ISI>://000255868200005-
heal.identifier.secondaryhttp://link.springer.com/content/pdf/10.1007%2Fs00229-008-0174-y.pdf-
heal.journalNameManuscripta Mathematicaen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2008-
heal.publisherSpringer Verlag (Germany)en
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: