Towards building a dynamic bayesian network for monitoring oral cancer progression using time course gene expression data
Φόρτωση...
Ημερομηνία
Συγγραφείς
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
IEEE
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
In this work we present a methodology for modeling and monitoring the evolvement of oral cancer in remittent patients during the post-treatment follow-up period. Our primary aim is to calculate the probability that a patient will develop a relapse but also to identify the approximate timeframe that this relapse is prone to appear. To this end, we start off by analyzing a broad set of time-course gene expression data in order to identify a set of genes that are mostly differentially expressed between patients with and without relapse and are therefore discriminatory and indicative of a disease reoccurrence evolvement. Next, we employ the maintained genes coupled with a patient-specific risk indicator in order to build upon them a Dynamic Bayesian Network (DBN) able to stratify patients based on their probability for a disease reoccurrence, but also pinpoint an approximate timeframe that the relapse might appear.
Περιγραφή
Λέξεις-κλειδιά
Oral Cancer, Dynamic Bayesian Networks, Cancer Evolution Monitoring
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Οικονομικών και Κοινωνικών Επιστημών. Τμήμα Οικονομικών Επιστημών
