Reinforcement learning using the stochastic fuzzy min-max neural network

dc.contributor.authorLikas, A.en
dc.date.accessioned2015-11-24T17:00:06Z
dc.date.available2015-11-24T17:00:06Z
dc.identifier.issn1370-4621-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/10708
dc.rightsDefault Licence-
dc.subjectfuzzy min-max neural networken
dc.subjectpole balancing problemen
dc.subjectreinforcement learningen
dc.subjectstochastic automatonen
dc.titleReinforcement learning using the stochastic fuzzy min-max neural networken
heal.abstractThe fuzzy min-max neural network constitutes a neural architecture that is based on hyperbox fuzzy sets and can be incrementally trained by appropriately adjusting the number of hyperboxes and their corresponding volumes. An extension to this network has been proposed recently, that is based on the notion of random hyperboxes and is suitable for reinforcement learning problems with discrete action space. In this work, we elaborate further on the random hyperbox idea and propose the stochastic fuzzy min-max neural network, where each hyperbox is associated with a stochastic learning automaton. Experimental results using the pole balancing problem indicate that the employment of this model as an action selection network in reinforcement learning schemes leads to superior learning performance compared with the traditional approach where the multilayer perceptron is employed.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.journalNameNeural Processing Lettersen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2001-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: