The finite element method with applications in fluid mechanics
Φόρτωση...
Ημερομηνία
Συγγραφείς
Byraki, Kyriaki N.
Μπυράκη, Κυριακή Ν.
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
The finite element method is a widely known numerical method for calculating approximate
solutions of ordinary differential equations (ODEs) and partial differential equations (PDEs).
This method is a powerful tool in the study of various nonlinear problems and has many
applications, such as structural analysis and fluid mechanics. In this thesis we concentrate on
applying the method mainly to Fluid Mechanics problems. Initially, we present the method
along with the basic theorems and examples. We analyze the a priori errors for linear
problems and the base functions that distinguish the problem under consideration. We further
present the numerical solution of the one–dimensional nonlinear Duffing equation.
Additionally, we concentrate on the two–dimensional Stokes problem. We focus on
presenting novel finite element method variants, such as the Discontinuous Galerkin method.
The notion of adaptive mesh is also discussed. Lastly, we study the two–dimensional
Navier–Stokes equations. We present the formulation of the equations in the classical
Galerkin method. These advanced methods provide reliable numerical results in all studied
cases. This is achieved with the application of the Finite Element methods to appropriate “test
problems”, such as the backward facing step. We obtain all the numerical results utilizing the
software programs Matlab and FEniCS.
Η μέθοδος των πεπερασμένων στοιχείων είναι μια ευρέως γνωστή αριθμητική μέθοδος για τον υπολογισμό προσεγγιστικών λύσεων συνήθων διαφορικών εξισώσεων (Σ.Δ.Ε.) και μερικών διαφορικών εξισώσεων (Μ.Δ.Ε.). Η μέθοδος είναι ένα πολύ ισχυρό εργαλείο στη μελέτη διαφόρων μαθηματικών μη-γραμμικών προβλημάτων και έχει πολλές εφαρμογές, όπως η δομική ανάλυση και η μηχανική των ρευστών. Σε αυτή τη διατριβή επικεντρωνόμαστε στην εφαρμογή της μεθόδου κυρίως σε προβλήματα Ρευστομηχανικής. Αρχικά παρουσιάζουμε τη μέθοδο μαζί με τα βασικά θεωρήματα και παραδείγματα. Αναλύουμε τα εκ των προτέρων (a priori) σφάλματα για γραμμικά προβλήματα και παρουσιάζουμε τις συναρτήσεις βάσης που εφαρμόζονται στα υπό εξέταση προβλήματα που μελετάμε. Παρουσιάζουμε την αριθμητική λύση της μονοδιάστατης μη-γραμμικής εξίσωσης του Duffing. Επιπλέον, επικεντρωνόμαστε στο δισδιάστατο πρόβλημα του Stokes. Στην εργασία αυτή παρουσιάζουμε νεότερες παραλλαγές των μεθόδων πεπερασμένων στοιχείων, όπως είναι η ασυνεχής μέθοδος του Galerkin. Παρουσιάζεται επίσης η έννοια του τοπικά εκλεπτυσμένου πλέγματος (adaptive mesh). Τέλος, μελετάμε τις δισδιάστατες μη-γραμμικές εξισώσεις των Navier–Stokes εφαρμόζοντας τη κλασική μέθοδο του Galerkin. Αυτές οι προηγμένες μέθοδοι παρέχουν αξιόπιστα αριθμητικά αποτελέσματα σε όλες τις περιπτώσεις που μελετήθηκαν. Αυτό επιτυγχάνεται με την εφαρμογή των μεθόδων Πεπερασμένων Στοιχείων σε κατάλληλα ‘προβλήματα δοκιμής’, όπως είναι η οπίσθια κατάβαση (σκαλί) της ροής (backward facing step). ΄Ολα τα αριθμητικά πειράματα έχουν πραγματοποιηθεί με κώδικά που αναπτύχθηκε στα προγράμματα Matlab και FEniCS.
Η μέθοδος των πεπερασμένων στοιχείων είναι μια ευρέως γνωστή αριθμητική μέθοδος για τον υπολογισμό προσεγγιστικών λύσεων συνήθων διαφορικών εξισώσεων (Σ.Δ.Ε.) και μερικών διαφορικών εξισώσεων (Μ.Δ.Ε.). Η μέθοδος είναι ένα πολύ ισχυρό εργαλείο στη μελέτη διαφόρων μαθηματικών μη-γραμμικών προβλημάτων και έχει πολλές εφαρμογές, όπως η δομική ανάλυση και η μηχανική των ρευστών. Σε αυτή τη διατριβή επικεντρωνόμαστε στην εφαρμογή της μεθόδου κυρίως σε προβλήματα Ρευστομηχανικής. Αρχικά παρουσιάζουμε τη μέθοδο μαζί με τα βασικά θεωρήματα και παραδείγματα. Αναλύουμε τα εκ των προτέρων (a priori) σφάλματα για γραμμικά προβλήματα και παρουσιάζουμε τις συναρτήσεις βάσης που εφαρμόζονται στα υπό εξέταση προβλήματα που μελετάμε. Παρουσιάζουμε την αριθμητική λύση της μονοδιάστατης μη-γραμμικής εξίσωσης του Duffing. Επιπλέον, επικεντρωνόμαστε στο δισδιάστατο πρόβλημα του Stokes. Στην εργασία αυτή παρουσιάζουμε νεότερες παραλλαγές των μεθόδων πεπερασμένων στοιχείων, όπως είναι η ασυνεχής μέθοδος του Galerkin. Παρουσιάζεται επίσης η έννοια του τοπικά εκλεπτυσμένου πλέγματος (adaptive mesh). Τέλος, μελετάμε τις δισδιάστατες μη-γραμμικές εξισώσεις των Navier–Stokes εφαρμόζοντας τη κλασική μέθοδο του Galerkin. Αυτές οι προηγμένες μέθοδοι παρέχουν αξιόπιστα αριθμητικά αποτελέσματα σε όλες τις περιπτώσεις που μελετήθηκαν. Αυτό επιτυγχάνεται με την εφαρμογή των μεθόδων Πεπερασμένων Στοιχείων σε κατάλληλα ‘προβλήματα δοκιμής’, όπως είναι η οπίσθια κατάβαση (σκαλί) της ροής (backward facing step). ΄Ολα τα αριθμητικά πειράματα έχουν πραγματοποιηθεί με κώδικά που αναπτύχθηκε στα προγράμματα Matlab και FEniCS.
Περιγραφή
Λέξεις-κλειδιά
Finite elements, Fluid mechanics, Numerical solutions, Galerkin method, Πεπερασμένα στοιχεία, Ρευστομηχανική, Αριθμητικές λύσεις, Μέθοδος του Galerkin
Θεματική κατηγορία
Finite elements
Παραπομπή
Σύνδεσμος
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών
Όνομα επιβλέποντος
Ξένος, Μιχαήλ
Εξεταστική επιτροπή
Ξένος, Μιχαήλ
Χωρίκης, Θεόδωρος
Καρακατσάνη, Φωτεινή
Χωρίκης, Θεόδωρος
Καρακατσάνη, Φωτεινή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών
Πίνακας περιεχομένων
Χορηγός
Βιβλιογραφική αναφορά
Βιβλιογραφία: σ. 67-69
Ονόματα συντελεστών
Αριθμός σελίδων
69 σ.
Λεπτομέρειες μαθήματος
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Άδεια Creative Commons
Άδεια χρήσης της εγγραφής: Attribution-NonCommercial-NoDerivs 3.0 United States

