Use of a novel rule-based expert system in the detection of changes in the ST segment and the T wave in long duration ECGs

dc.contributor.authorPapaloukas, C.en
dc.contributor.authorFotiadis, D. I.en
dc.contributor.authorLikas, A.en
dc.contributor.authorStroumbis, C. S.en
dc.contributor.authorMichalis, L. K.en
dc.date.accessioned2015-11-24T17:31:52Z
dc.date.available2015-11-24T17:31:52Z
dc.identifier.issn0022-0736-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/13636
dc.rightsDefault Licence-
dc.subjectcomputerized detection of ecg changesen
dc.subjectst-segment episodesen
dc.subjectt-wave episodesen
dc.subjectmedical expert systemen
dc.titleUse of a novel rule-based expert system in the detection of changes in the ST segment and the T wave in long duration ECGsen
heal.abstractThe development of a new fast and robust computerised system is examined in detecting electrocardiogram (ECG) changes in long duration ECG recordings. The system distinguishes these changes between ST-segment deviation and T-wave alterations and can support the produced diagnosis by providing explanations for the decisions made. The European Society of Cardiology ST-T Database was used for evaluating the performance of the system. Sensitivity and positive predictive accuracy were the performance measures used and the proposed system scored 92.02% and 93.77%, respectively, in detecting ST-segment episodes and 91.09% and 80.09% in detecting T-wave episodes. By using the chi-square test we also compared the performance of the system between ECG recordings with minimal and Substantial amount of noise. The sensitivity of the proposed system is higher than of other algorithms reported in the literature and the positive predictive accuracy is comparable to, or better than, most of them.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.secondary<Go to ISI>://000173615900004-
heal.identifier.secondaryhttp://ac.els-cdn.com/S0022073602296351/1-s2.0-S0022073602296351-main.pdf?_tid=16a39a5e3fb5bcd4368b1244bae579eb&acdnat=1339758364_bf9f85721cc95e4a7835f7e26cc0872f-
heal.journalNameJ Electrocardiolen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2002-
heal.publisherElsevieren
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Επιστήμης Υλικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: