What is the spatial distribution of magnetic helicity injected in a solar active region?

Loading...
Thumbnail Image

Date

Authors

Pariat, E.
Nindos, A.
Demoulin, P.
Berger, M. A.

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Type of the conference item

Journal type

peer reviewed

Educational material type

Conference Name

Journal name

Astronomy & Astrophysics

Book name

Book series

Book edition

Alternative title / Subtitle

Description

Context. Magnetic helicity is suspected to play a key role in solar phenomena such as flares and coronal mass ejections. Several investigations have recently computed the photospheric flux of magnetic helicity in active regions. The derived spatial maps of the helicity flux density, called G(A), have an intrinsic mixed-sign patchy distribution. Aims. Pariat et al. ( 2005) recently showed that GA is only a proxy of the helicity flux density, which tends to create spurious polarities. They proposed a better proxy, G.. We investigate here the implications of this new approach on observed active regions. Methods. The magnetic data are from MDI/SoHO instrument and the photospheric velocities are computed by local correlation tracking. Maps and temporal evolution of GA and G. are compared using the same data set for 5 active regions. Results. Unlike the usual GA maps, most of our G. maps show almost unipolar spatial structures because the nondominant helicity flux densities are significantly suppressed. In a few cases, the G. maps still contain spurious bipolar signals. With further modelling we infer that the real helicity flux density is again unipolar. On time-scales larger than their transient temporal variations, the time evolution of the total helicity fluxes derived from GA and G. show small differences. However, unlike GA, with G. the time evolution of the total flux is determined primarily by the predominant-signed flux while the nondominant-signed flux is roughly stable and probably mostly due to noise. Conclusions. Our results strongly support the conclusion that the spatial distribution of helicity injected into active regions is much more coherent than previously thought: on the active region scale the sign of the injected helicity is predominantly uniform. These results have implications for the generation of the magnetic field ( dynamo) and for the physics of both flares and coronal mass ejections.

Description

Keywords

sun : magnetic fields, sun : photosphere, sun : corona, local correlation tracking, coronal mass ejections, induction equation, eruptive flares, flux-density, x-class, magnetograms, motions, energy, budget

Subject classification

Citation

Link

<Go to ISI>://000237747800030
http://www.aanda.org/articles/aa/pdf/2006/23/aa4643-05.pdf

Language

en

Publishing department/division

Advisor name

Examining committee

General Description / Additional Comments

Institution and School/Department of submitter

Πανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών και Τεχνολογιών. Τμήμα Βιολογικών Εφαρμογών και Τεχνολογιών

Table of contents

Sponsor

Bibliographic citation

Name(s) of contributor(s)

Number of Pages

Course details

Endorsement

Review

Supplemented By

Referenced By