On two forms of Fisher's measure of information
Φόρτωση...
Ημερομηνία
Συγγραφείς
Papaioannou, T.
Ferentinos, K.
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
Communications in Statistics-Theory and Methods
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
Fisher's information number is the second moment of the "score function" where the derivative is with respect to x rather than theta. It is Fisher's information for a location parameter, and also called shift-invariant Fisher information. In recent years, Fisher's information number has been frequently used in several places regardless of parameters of the distribution or of their nature. Is this number a nominal, standard, and typical measure of information? The Fisher information number is examined in light of the properties of classical statistical information theory. It has some properties analogous to those of Fisher's measure, but, in general, it does not have good properties if used as a measure of information when theta is not a location parameter. Even in the case of location parameter, the regularity conditions must be satisfied. It does not possess the two fundamental properties of the mother information, namely the monotonicity and invariance under sufficient transformations. Thus the Fisher information number should not be used as a measure of information (except when theta a location parameter). On the other hand, Fisher's information number, as a characteristic of a distribution f(x), has other interesting properties. As a byproduct of its superadditivity property a new coefficient of association is introduced.
Περιγραφή
Λέξεις-κλειδιά
additivity, convolutions, cramer-rao inequality, fisher information, fisher information number, limit theory, maximal information, observed and expected fisher information, shift-invariant fisher information, superadditivity, inequality, dependence, matrix, superadditivity
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
<Go to ISI>://000231005000003
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών