The Global Kernel k-Means Algorithm for Clustering in Feature Space
dc.contributor.author | Tzortzis, G. F. | en |
dc.contributor.author | Likas, A. C. | en |
dc.date.accessioned | 2015-11-24T17:02:13Z | |
dc.date.available | 2015-11-24T17:02:13Z | |
dc.identifier.issn | 1045-9227 | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/11026 | |
dc.rights | Default Licence | - |
dc.subject | clustering | en |
dc.subject | graph partitioning | en |
dc.subject | k-means | en |
dc.subject | kernel k-means | en |
dc.title | The Global Kernel k-Means Algorithm for Clustering in Feature Space | en |
heal.abstract | Kernel k-means is an extension of the standard k-means clustering algorithm that identifies nonlinearly separable clusters. In order to overcome the cluster initialization problem associated with this method, we propose the global kernel k-means algorithm, a deterministic and incremental approach to kernel-based clustering. Our method adds one cluster at each stage, through a global search procedure consisting of several executions of kernel k-means from suitable initializations. This algorithm does not depend on cluster initialization, identifies nonlinearly separable clusters, and, due to its incremental nature and search procedure, locates near-optimal solutions avoiding poor local minima. Furthermore, two modifications are developed to reduce the computational cost that do not significantly affect the solution quality. The proposed methods are extended to handle weighted data points, which enables their application to graph partitioning. We experiment with several data sets and the proposed approach compares favorably to kernel k-means with random restarts. | en |
heal.access | campus | - |
heal.fullTextAvailability | TRUE | - |
heal.identifier.primary | Doi 10.1109/Tnn.2009.2019722 | - |
heal.journalName | Ieee Transactions on Neural Networks | en |
heal.journalType | peer reviewed | - |
heal.language | en | - |
heal.publicationDate | 2009 | - |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής | el |
heal.type | journalArticle | - |
heal.type.el | Άρθρο Περιοδικού | el |
heal.type.en | Journal article | en |
Αρχεία
Φάκελος/Πακέτο αδειών
1 - 1 of 1
Φόρτωση...
- Ονομα:
- license.txt
- Μέγεθος:
- 1.74 KB
- Μορφότυπο:
- Item-specific license agreed upon to submission
- Περιγραφή: