Implicit-explicit multistep finite element methods for nonlinear parabolic problems
Φόρτωση...
Ημερομηνία
Συγγραφείς
Akrivis, G.
Crouzeix, M.
Makridakis, C.
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
Mathematics of Computation
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
We approximate the solution of initial boundary value problems for nonlinear parabolic equations. In space we discretize by finite element methods. The discretization in time is based on linear multistep schemes. One part of the equation is discretized implicitly and the other explicitly. The resulting schemes are stable, consistent and very efficient, since their implementation requires at each time step the solution of a linear system with the same matrix for all time levels. We derive optimal order error estimates. The abstract results are applied to the Kuramoto-Sivashinsky and the Cahn-Hilliard equations in one dimension, as well as to a class of reaction diffusion equations in R-nu, nu = 2, 3.
Περιγραφή
Λέξεις-κλειδιά
kuramoto-sivashinsky equation, motion
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
<Go to ISI>://000072729700001
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Χημείας